Search results for " Wave propagation"
showing 10 items of 18 documents
Generalised bisection method for optimum ultrasonic ray tracing and focusing in multi-layered structures
2021
Ultrasonic testing has been used for many decades, proving itself very efficient for detecting defects in many industrial sectors. The desire to apply ultrasonic testing to geometrically complex structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics and software, is constantly pushing the applicability of ultrasonic waves to their limits. General ray tracing models, suitable for calculating the proper incident angle of single element probes and the proper time delay of phased array, are currently required. They can support the development of new imaging techniques, as Full Matrix Capture and Total Focusing Method, and the execution of …
Contribution à l'étude des liaisons optiques atmosphériques : propagation, disponibilité et fiabilité.
2005
In this work we study the fog attenuation in the visible and infrared spectral band related to Free Space Optics (FSO). Based on the Mie scattering theory, fog extinction coefficients for different particle size distributions as a function of wavelength were derived. A simple analytical model allowing the prediction of atmospheric transmission for the 0.69 - 1.55 µm spectral band was developed. This model is valid for advection and convection fog and for visibility range between 50 to 1000 m. This model, implemented into software developed at FT R&D, allows the prediction of the Quality of Service of FSO links. Finally, we performed an experimental study to compare the fog effect on two FSO…
Modulational instability and generation of self-induced transparency solitons in resonant optical fibers
2009
International audience; We consider continuous-wave propagation through a fiber doped with two-level resonant atoms, which is described by a system of nonlinear Schrodinger-Maxwell-Bloch (NLS-MB) equations. We identify the modulational instability (MI) conditions required for the generation of ultrashort pulses, in cases of both anomalous and normal GVD (group-velocity dispersion). It is shown that the self-induced transparency (SIT) induces non-conventional MI sidebands. The main result is a prediction of the existence of both bright and dark SIT solitons in the anomalous and normal GVD regimes.
Optical multichannel sensing of skin blood pulsations
2004
Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous …
A RADIATION CONDITION FOR UNIQUENESS IN A WAVE PROPAGATION PROBLEM FOR 2-D OPEN WAVEGUIDES
2009
We study the uniqueness of solutions of Helmholtz equation for a problem that concerns wave propagation in waveguides. The classical radiation condition does not apply to our problem because the inhomogeneity of the index of refraction extends to infinity in one direction. Also, because of the presence of a waveguide, some waves propagate in one direction with different propagation constants and without decaying in amplitude. Our main result provides an explicit condition for uniqueness which takes into account the physically significant components, corresponding to guided and non-guided waves; this condition reduces to the classical Sommerfeld-Rellich condition in the relevant cases. Final…
A boundary element model for structural health monitoring using piezoelectric transducers
2013
In this paper, for the first time, the boundary element method (BEM) is used for modelling smart structures instrumented with piezoelectric actuators and sensors. The host structure and its cracks are formulated with the 3D dual boundary element method (DBEM), and the modelling of the piezoelectric transducers implements a 3D semi-analytical finite element approach. The elastodynamic analysis of the structure is performed in the Laplace domain and the time history is obtained by inverse Laplace transform. The sensor signals obtained from BEM simulations show excellent agreement with those from finite element modelling simulations and experiments. This work provides an alternative methodolog…
<title>Optical non-invasive monitoring of skin blood pulsations</title>
2005
Time resolved detection and analysis of the skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. The single- and multi-channel PPG concepts are discussed in this work. Simultaneous data flow from several body locations allows one to study the heartbeat pulse wave propagation in real time and evaluate the vascular resistance. Portable single-, dual- and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The clinical studies confirmed their potential in the monitoring of heart arrhythmias, …
Review of acoustic methods for space charge measurement
2015
In the last decade, due to the increased use of direct current, the space charge accumulation phenomenon has reached more interest. In this regard, several non-destructive measurement systems were used. In particular, for solid dielectrics, the acoustic methods have had greater success. This review presents a brief historical evolution of the Pulse Electro- Acoustic (PEA) method, describing the working operation, the thicknesses analyzed and the spatial resolution for the different configurations of the PEA cell. The Pressure Wave Propagation (PWP) method in both configurations Piezo-PWP and Laser Induced Pressure Pulse (LIPP) is also described.
Improved Global-Local Method for Ultrasonic Guided Wave Scattering Predictions in Composite Waveguides and Defects
2023
Abstract As structures increase in complexity, in the use of high-performing materials and designs, their health assessment becomes increasingly challenging. Ultrasonic guided waves (UGWs) have shown to be very promising in the inspection of large (i.e. aerospace components) attenuating (i.e. composite materials) structures and have been successfully employed for damage detection in a variety of fields. The intrinsic complex nature of UGWs, due to their dispersive behavior, combined with the structural complexity of the applications, though, makes the interpretation of UGW inspections very challenging. Numerical simulations of UGW propagation become crucial to this end and have been address…
Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response
2006
International audience; We analyse modulational instability (MI) of electromagnetic waves in a large variety of optical fibers having different refractive-index profiles. For the normal-, anomalous-, and zero-dispersion regimes of the wave propagation, we show that whenever the second-order dispersion competes with higher-order dispersion (HOD), propagation of plane waves leads to a rich variety of dynamical behaviors. Most of the richness comes from the existence of critical behaviors, which include situations in which the HOD suppresses MI in the anomalous dispersion regime, and other situations in which the HOD acts in the opposite way by inducing non-conventional MI processes in the nor…